ISS016-E-12047
NASA Photo ID | ISS016-E-12047 |
Focal Length | 400mm |
Date taken | 2007.11.22 |
Time taken | 19:13:37 GMT |
Resolutions offered for this image:
1000 x 641 pixels 540 x 346 pixels 540 x 711 pixels 3032 x 2064 pixels 639 x 435 pixels
1000 x 641 pixels 540 x 346 pixels 540 x 711 pixels 3032 x 2064 pixels 639 x 435 pixels
Country or Geographic Name: | CHILE |
Features: | TYNDALL GLACIER, LAKE GEIKIE |
Features Found Using Machine Learning: | |
Cloud Cover Percentage: | 10 (1-10)% |
Sun Elevation Angle: | 50° |
Sun Azimuth: | 308° |
Camera: | Kodak DCS760c Electronic Still Camera |
Focal Length: | 400mm |
Camera Tilt: | High Oblique |
Format: | 3060E: 3060 x 2036 pixel CCD, RGBG array |
Film Exposure: | |
Additional Information | |
Width | Height | Annotated | Cropped | Purpose | Links |
---|---|---|---|---|---|
1000 pixels | 641 pixels | No | Yes | Earth From Space collection | Download Image |
540 pixels | 346 pixels | Yes | Yes | Earth From Space collection | Download Image |
540 pixels | 711 pixels | Yes | Yes | NASA's Earth Observatory web site | Download Image |
3032 pixels | 2064 pixels | No | No | Download Image | |
639 pixels | 435 pixels | No | No | Download Image |
Download Packaged File
Download a Google Earth KML for this Image
View photo footprint information
Download a GeoTIFF for this photo
Image Caption: Tyndall Glacier, Chile
Tyndall Glacier is located in the Torres del Paine National Park in Chile. This glacier, which has a total area of 331 square kilometers and a length of 32 kilometers (based on 1996 measurements), begins in the Patagonian Andes Mountains to the west and terminates in Lago Geikie. The digital astronaut photograph records visible light in red, green, and blue wavelengths (true color). The Tyndall Glacier terminus has retreated significantly during the past 17 years. Significant ice loss was also observed earlier this year at Grey Glacier, about 30 kilometers to the north-northeast, suggesting both glaciers are responding similarly to regional changes in temperature and precipitation.
A medial moraine is visible in the center of the glacier, extending along its length (top image, center left). Moraines--accumulations of soil and rock debris--form along the edges of a glacier as it flows downhill across the landscape (much like a snowplow builds ridges of snow along the roadside). Glaciers flowing downslope through adjacent valleys merge when they encounter each other, and debris entrained along their sides becomes concentrated in the central portion of the new combined ice mass, much as small streams join to form a river.
Crevasse fields are also visible in the image. The crevasses--small, but potentially quite deep fissures--form as a result of stress between slower- and faster-moving ice within the glacier. Crevasse fields on Tyndall Glacier are most evident near rock promontories extending into the glacier; these rock outcrops cause the ice to slow as it flows around the obstruction.
Tyndall Glacier is located in the Torres del Paine National Park in Chile. This glacier, which has a total area of 331 square kilometers and a length of 32 kilometers (based on 1996 measurements), begins in the Patagonian Andes Mountains to the west and terminates in Lago Geikie. The digital astronaut photograph records visible light in red, green, and blue wavelengths (true color). The Tyndall Glacier terminus has retreated significantly during the past 17 years. Significant ice loss was also observed earlier this year at Grey Glacier, about 30 kilometers to the north-northeast, suggesting both glaciers are responding similarly to regional changes in temperature and precipitation.
A medial moraine is visible in the center of the glacier, extending along its length (top image, center left). Moraines--accumulations of soil and rock debris--form along the edges of a glacier as it flows downhill across the landscape (much like a snowplow builds ridges of snow along the roadside). Glaciers flowing downslope through adjacent valleys merge when they encounter each other, and debris entrained along their sides becomes concentrated in the central portion of the new combined ice mass, much as small streams join to form a river.
Crevasse fields are also visible in the image. The crevasses--small, but potentially quite deep fissures--form as a result of stress between slower- and faster-moving ice within the glacier. Crevasse fields on Tyndall Glacier are most evident near rock promontories extending into the glacier; these rock outcrops cause the ice to slow as it flows around the obstruction.